jMRUI 7.0 released

We are happy to announce the new jMRUI version 7.0

This new version comes loaded with many improvements and new features, amongst the most important:

  • FiTAID – Fitting Tool for Arrays of Interrelated Datasets. A new plugin for multidimensional, interrelated spectra quantification: models for 1D, 2D and multidimensional fitting (Saturation recovery, Inversion recovery, 2DJ,  2DJ diffusion, 2DJIR); flexible construction of the signal model with metabolite profiles defined as combinations of simulated signal profile(s) (simulated, e.g., in VeSPA, NMRScopeB (jMRUI)) and/or resonance peaks (Gaussian, Lorentzian, Voigt shapes); possibility to set various constraints on estimated parameters; possibility to select the fitting strategy (e.g. fitting domain, simultaneous or individual fit, algorithm, fitting region etc.); visualization tools for multidimensional data; batch processing of large multi-dimensional MRS data;
  • Flexible algorithm for combining spectra from array coils, tested for GE and Bruker raw data
  • plugin for phase and frequency correction of SV or MRSI spectra, based on a selected peak;
  • improved handling and processing of multi-slice MRSI data;
  • QUASARY (improved QUASARX), i.e., QUASAR with a choice of Gaussian or Lorentzian lineshape, common damping for selected metabolites, fixed amplitude ratios between selected metabolites;
  • AMARES is now accessible from the plugin SpectrIm and the resulting metabolite maps obtained in AMARES can be imported back into SpectrIm for visualization; the AMARES starting values, peak positions, and other prior knowledge can be saved/loaded as text files with a single click;
  • NMRScopeB implemented with Python3, with improved protocols;
  • support of new data formats: Bruker PV360, new GE data format, MRS-NIfTI data standard format in jMRUI; option to store/load quantification results and simulated spectra in JSON/NIfTI format; spectra including MRSI data can be saved in Matlab; Philips Advanced DICOM integrated in SpectrIm.

© 2023, MRUI Consortium. All rights reserved by MRUI Consortium except for texts and images already copyrighted by third parties (e.g. journal publishers) and used here according to their licensing terms and/or under the fair use provision.

rssrss
FacebooktwitterlinkedinmailFacebooktwitterlinkedinmail

About Jana

I am a senior scientist working in the field of NMR at the Institute of Scientific Instruments of the Czech Academy of Sciences. During my research fellowship in 1993-1995 and 1998-1999 at the National Research Council Canada I developed software for processing, displaying and analyzing multidimensional MRI and CSI data called MAREVISI. In 2009 I joined the jMRUI development team starting to co-develop spin system simulator NMRScopeB, a plug-in to jMRUI. In 2012 I took over the jMRUI development coordination from the previous jMRUI development coordinator Danielle Graveron-Demilly when she retired.